top of page

English by Carol Group

Public·136 members

Cameron Walker
Cameron Walker

Where To Buy Agitator Dogs \/\/TOP\\\\


As we said earlier, a malfunctioning agitator is often caused by worn agitator dogs. Usually, the failure is simply due to normal wear and tear or old age, but overloading your washing machine on a regular basis can also speed up the deterioration of the part.




where to buy agitator dogs



If your washing machine is not dispensing detergent, it might be because of an issue with your agitator dogs. Worn-out agitator dogs will cause your washer to no longer clean your clothes properly or dispense the correct amount of detergent. The agitator dogs are directly responsible for the rotating ability of the agitator itself, and if they are worn out it can cause the agitator to stop turning completely. Below is a comprehensive step-by-step guide with specific details on how you can find, diagnose and replace your agitator dogs.


Agitator dogs are located within a mechanism that sits inside of the center column agitator. They are essential to the rotation and agitation of the cycle, and ensure that the load is properly washed.


The easiest way to diagnose if your dogs are worn down is to try to turn the top portion of the agitator, and if it turns both clockwise and counter-clockwise without issue, they need to be replaced. If the dogs are still in functioning condition, the agitator would only allow you to rotate it one way and not the other without some sort of stopping force.


A thrust spacer having resilient, upwardly angled tabs is provided to act as a variable spacer within a two-piece agitator, between an upper agitator portion and a lower agitator portion to prevent relative vertical movement between the two portions while permitting relative rotational movement therebetween. Each of the tabs is positioned adjacent to an opening larger than the tab to permit the tab to be compressed into the opening to provide a large degree of variability in the height of the tabs. The spacer also includes angled arms which engage with slots in the lower agitator portion to cause the spacer to rotate with the lower agitator portion.


A one way clutch mechanism for a dual action agitator is disclosed in U.S. Pat. No. 4,719,769 assigned to the assignee of the present invention. In that patent, oscillatory motion of a drive shaft is translated into unidirectional intermittent rotary motion of an upper agitator part through the use of a one-way clutch mechanism. The upper agitator part is rotatingly carried a the lower agitator part which oscillates with the drive shaft. The lower agitator part is fastened directly to an extension of the drive shaft by a bolt which also clampingly captures a cam forming a part of the clutch. The upper agitator part has an interior annular mounting ring 52 which merely rests on a bearing surface of the lower agitator part, but is not otherwise held vertically in place. The cam is spaced vertically above the mounting ring which permits some vertical movement of the upper agitator portion. It is of course necessary that the upper agitator portion not be firmly clamped because it must rotate relative to the lower agitator portion in order to provide the desired function. Further, due to manufacturing tolerances, it cannot be assured that there will be no vertical play of the upper agitator part support ring between the lower agitator part bearing surface and the cam. The vertical movement possible by the upper agitator does cause some excessive wear on the cam and also causes a chattering as the upper agitator part bounces vertically during an agitate portion of the wash cycle. Therefore, it would be advantageous if a means were provided to prevent vertical movement of the upper agitator part while still permitting relative rotary motion between the upper agitator part and the lower agitator part.


Further, it is an object of the present invention to provide a means for preventing free vertical movement between an upper agitator portion and a lower agitator portion in a dual action agitator while still permitting relative rotary motion about a vertical axis between the two agitator parts.


It is an additional object of the invention to provide a device for filling the vertical space between the lower agitator bearing surface and the cam not occupied by the upper agitator part support ring, which device compensates for manufacturing variations in the parts sizes within acceptable tolerance levels.


It is a still further object of the invention to provide a thrust spacer between the support ring on the upper agitator portion and the bearing surface on the lower agitator portion, which thrust spacer substantially fills the vertical space between the support ring and bearing surface and provides a bias against the support ring to urge it into firm contact with a bearing surface of the cam member.


These and other objects are achieved by the present invention, where, in a preferred embodiment of the invention, a thrust spacer is provided in the form of a ring having a cylindrical sidewall and an outwardly extending flange-type top wall, the top wall being positioned in the gap between the upper bearing surface of the lower agitator portion and the lower surface of the upper agitator portion support ring. The top flange wall portion of the thrust spacer has a plurality of tabs bent upwardly therefrom which are formed of the same material as the thrust spacer, preferably a plastic material such as DuPont Delren II, which is resilient, thus providing a spring force to the tabs and therefore being an expandable means to fill the gap between the two relatively moving parts. The tabs are formed to have a natural height greater than the maximum space between the bearing surface of the lower agitator portion and the support ring when the support ring is held up against the clutch cam at a maximum tolerance variance, so that the tabs will be maintained in a slightly compressed state, to continuously bias the support ring against the clutch cam.


The thrust spacer is concentrically positioned on the lower agitator portion by the cylindrical sidewall and is held against rotation relative to the lower agitator portion by a plurality of arms which extend upwardly and outwardly from the thrust spacer cylindrical wall to support the top flange wall. These support arms are received within slots in the lower agitator portion and therefore the thrust spacer rotates with the lower agitator portion.


FIG. 1 is a perspective view of a washing machine, partially cut away to illustrate a dual-action agitator utilizing a one-way clutch mechanism and thrust spacer incorporating the principles of the present invention.


The present invention finds particular utility in a two-piece vertical agitator, although the invention is not limited to such an embodiment and environment. However, to provide a detailed description of the invention, it will be disclosed in the form of this particular embodiment.


In FIG. 1 there is a shown an automatic washing machine generally at 20 including a cabinet 22 having an openable door 24 in a top panel 26 thereof and a control console 28 along a back portion thereof including a plurality of presetable controls 30 for automatically controlling selected laundering cycles having washing, rinsing and drying periods in a program. A washing tub 32 is mounted within the basket 22 and includes an interior perforate basket 34 forming a treatment zone and a dual action agitator 36 driven by a motor and transmission 38 all of which is mounted on a support frame 40. The agitator 36 includes a lower portion 42 having a skirt 43 and radial fins 44 and an upper portion 46 in the form of a barrel having an auger-like vane 48 helically arranged at an exterior surface thereof.


As seen in greater detail in FIGS. 2 and 6 a drive shaft 50 extends upwardly from the motor into the center of the wash tub 32 and the perforate basket 34 to support and drive the agitator 36. The lower agitator portion 42 has a vertical cylindrical portion 52 on which the upper agitator barrel 46 is mounted. An upper end 54 of the drive shaft 50 includes a splined connector 56 on which is mounted a splined opening 58 that is formed in the lower agitator portion 42. The lower agitator portion 42 has a top cylindrical extension 60 which extends upwardly within the upper agitator portion 46 and which terminates in a top bearing surface 62. A thrust spacer 64 incorporating the principles of the present invention is placed over the top of the cylindrical extension 60. The upper agitator portion 46 is fitted over the cylindrical walls 60 and 52 of the lower agitator portion 42 and is supported by an interior annular support ring 66 which rests on the top of the agitator thrust spacer 64. The upper agitator portion 46, thus, is rotatable independently of the lower agitator portion 42.


A clutch mechanism substantially similar to that described in U.S. Pat. No. 4,719,769 is used to provide unidirectional rotation of the upper agitator portion 46 by means of oscillatory input from the drive shaft 50. The description of the clutch mechanism of U.S. Pat. 4,719,769 is incorporated herein by reference and will be briefly described as follows:


A cam member 68 is fastened to the lower agitator portion 42 by means of a bolt 70 clamping the cam 68 and the lower agitator portion 42 together between the bolt head and the upper end of the drive shaft 50. An upper portion of the drive cam 68 extends radially outwardly and downwardly over the support ring 66 of the upper agitator portion 46. As seen in FIGS. 3 and 6, the cam 68 carries a plurality of dogs 74 (FIGS. 4 and 5) in a pivotal manner, each of the dogs having a tooth 76 formed thereon, the tooth being engagable with a row of teeth 78 formed on an interior surface of the upper agitator portion 46. As the drive shaft 50 rotates in a clockwise direction as shown in FIG. 3, the teeth of the dogs engage wi.+-.h the teeth 78 of the upper agitator portion and cause the upper agitator portion to rotate. When the drive shaft 50 rotates in the counter-clockwise direction, the dogs pivot in the cam such that the teeth 76 of the dogs move away from the teeth 78 of the upper agitator portion 46 and permit the lower agitator portion to rotate relative to the upper agitator portion which in turn remains stationary relative to the washer. A bottom surface 79 of each dog lies on an upper surface 80 of the support ring 66. The upper surface 80 also rides against a lower bearing surface 82 of the cam 68. 041b061a72


About

Welcome to the group! You can connect with other members, ge...

Members

Group Page: Groups_SingleGroup
bottom of page